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Abstract 

In a chemical reaction or in a phase transition, the heat production or consumption rate 
is proportional to the rate of conversion. It is well known that the signal curve of a heat 
flux calorimeter is delayed and deformed. In order to obtain the true heat flow rate 
generated by the reacting sample, a transformation method is needed. This is often called 
“desmearing”. There are two techniques for performing the transfo~ation. Owing to its 
simplicity the method based on a linear second-order differential equation is preferred in 
this paper as a desmearing tool, rather than the method based on the convolution theory. 
There are two time constants in the transformation formula. The determination of these 
constants under real conditions is the main subject of this paper. For this, a comprehensive 
mathematical treatment of the problem is necessary. 

INTRODUCTION 

In a heat flux calorimeter in its simplest form, a receptacle containing the 
reactive substance to be investigated is connected to a thermostatically 
controlled casing by means of a heat conducting resistance. This type of 
calorimeter can also be called a “heat conduction calorimeter”. It is 
normally operated in an isoperibolic mode. When no heat is flowing from 
the receptacle to the casing, both ends of the resistance are at the same 
temperature. 

An exothermic reaction in the sample substance generates a heat flow 
which is exactly proportional to the conversion rate of the reaction. A 
knowledge of this heat flow rate is therefore of interest in kinetic studies. 

At the beginning of heat generation, there is no temperature difference 
between the ends of the heat resistance. First the substance itself and the 
receptacle must be heated up by the source to produce an increasing 
difference.in temperature between the ends of the resistance. The rise in the 
temperature dT/dt at the end of the resistance which is nearest to the 
receptacle is given by the heat flow rate #sC from the sources divided by the 
heat capacity of the reacting substance and the receptacle, i.e. 
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dT/d, = 4JC. In the first approximation, the effluent heat flow rate 
through the heat resistance is proportional to the temperature difference 
between the ends of the resistance. The signal x displayed by the 
calorimeter is based on this temperature difference AT. Thus it is evident 
that the signal x follows the source heat flow rate as a function of time with 
delay and deformation (smearing). 

In order to obtain the source heat flow rate as a reliable basis for kinetic 
investigation, the signal curve x(t) must be desmeared. This task is 
complicated by the fact that the heat resistance itself has a heat capacity 
which cannot be wholly neglected and which disturbs the proportionality of 
the temperature difference at the resistance and the effluent heat flow rate. 
But it is certain that all the heat generated in the sources flows through the 
heat resistance. The time integral for the source heat flow rate from t = 0 to 
the end of the reaction is therefore exactly equivalent to the time integral 
for the effluent heat flow rate from t = 0 to ~0. 

Twin-type heat flux calorimeters where two equivalent heat conduction 
calorimeters have the same casing, represent great progress compared with 
the single type. The receptacle of one calorimetric system contains the 
reactive substance. An inert reference sample is placed in the receptacle of 
the other system, so that the heat capacities of the two caloric systems are 
equivalent. The heat resistances of both systems must also be mutually 
equivalent. For more details, see Hemminger and Hiihne [l]. 

One of the important advantages of this twin-type calorimeter is that it is 
possible to raise the temperature of the casing linearly providing a 
program-controlled furnace. This scanning operation means subjecting a 
defined heat flow rate from the furnace onto each sample, thus also making 
the investigation of endothermic reactions possible. From a mathematical 
point of view, neither the twin-type calorimeter operated in the scanning 
mode nor the replacement of an exothermic reaction with an endothermic 
one causes additional difficulties. 

The impressed heat flow rate due to the scanning mode can be measured 
at the resistance of the reference system. It can then be subtracted from the 
heat flow rate through the resistance of the other system. The heat flow rate 
from which the impressed flow rate is to be subtracted is the result of the 
vectorial addition of the heat flow rate from the reacting substance and the 
heat flow rate from the casing. The subtraction yields the reaction-caused 
heat flow rate through the heat resistance of this calorimetric system. Thus 
the problem of the twin-type calorimeter is reduced to that of the 
single-system type. The replacement of an exothermic reaction with an 
endothermic one means using heat sinks instead of heat sources. This 
means only a change in the sign of the corresponding terms in the equation 
used to describe the physical phenomenon. 

Because of the corresponding features of the two types of heat flux 
calorimeters and because no additional problem arises if the twin-type 
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calorimeter is operated in the isoperibolic mode (Tian-Calvet calorimeter) 
or in the scanning mode (DSC), all heat flux calorimeters can be treated 
collectively in order to solve the desmearing problem. 

CORRELATION OF THE SOURCE HEAT FLOW RATE WITH THE SIGNAL 

CURVE 

In accordance with Calvet and CAMIA [2], this paper describes the 
correlation of the source heat flow rate 4 with the signal x using a linear 
differential equation of second order 

4 =x + (r, + 2,) dX/dt + T~Z* d*X/dt* (1) 

Depending on the instrument, the signal x is recorded as an electric 
potential difference, converted into a temperature difference, or into the 
effluent heat flow rate; 4 always has the same dimension as x. In the 
following it is assumed that the signal x represents the effluent heat flow 
rate. Then 4 is the source heat flow rate. In the other cases, $I is 
proportional to the source flow rate, e.g. x = AT, then R,c,b,, where R, is 
the value of the heat conduction resistance. 

In eqn. (l), there are two time constants r, and r2. The evaluation of 
these time constants is the main subject of this paper. When both constants 
are known, eqn. (1) is the tool used to desmear the signal curve x(t) in 
order to obtain the source heat flow rate 4&t). For details dealing with 
reaction kinetics, see ref. 3, especially for handling the base line in kinetic 
investigations. If the dependence of +sc on time is low, then it suffices to 
replace the differential quotients with quotients of differences in eqn. (l), 
whereby the space of time At is chosen to suit the speed of the underlying 
reaction. The higher the speed, the smaller the At. 

A higher degree of accuracy is possible when the function x(t) is cut into 
sections and each section then approximated by means of a polynomial of 
high order which can be exactly differentiated once or twice. The steps of 
the operation are 

(i) x(0 -+ L+(f) 
(ii) Differentiation: dX ,,,,ldt, and d2xp&ldt2 

(iii) Putting (i) and (ii) into eqn. (1) 

xpo&) + (r, + r,) dxpolyldt + 2122 d2xpo,,ldt2 = b,y(t) 

Then c,b(t) can be plotted from +po,y(t). 

Equation (2) can be applied for the purpose of checking the transforma- 
tion of x into 4 

[$+dt=[x dt=I”4 dt (2) 

where t, is the end of the source heat generation, i.e. the end of the 
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reaction, and t, the time for which x becomes negligible (t, > te). In the 
case of a reaction, the integration of x = 4,x between 0 and t, yields 
Qr = -A,H. Equation (2) corresponds to the statement of the preceding 
paragraph that all the heat generated in the sample will flow out of the 
calorimetric system. The transformation is correct if the deviation of _l$4 dt 
from J; x dt is far less than 1%. Theoretically, there should be no deviation 
at all. 

DETERMINATION OF THE TIME CONSTANTS BY MEANS OF THE 

THEORY OF THE INFINITESIMAL HEAT PULSE 

Whereas the integration of eqn. (1) in order to obtain r$sC from x was not 
necessary, it is now needed to determine the time constants r, and r2. In the 
case of a heat impulse of infinitesimal duration, this is easily done because 
$sC = 0 for all values of time. Equation (1) therefore becomes homoge- 
neous, i.e. 

x + (r, + r,) dX/dt + rlrz d2xldt2 = 0 (3) 

Integration of eqn. (3) yields [l] 

x = [Q/(rl - r,)](e-“‘I - ePr”‘) (4) 

In eqn. (4), x is the response to the heat Q transferred within an 
infinitesimal space of time. The value of x(t) shows a maximum at t, and a 
point of inflection at ttp; T, must be greater than r2 because a positive Q 
gives a positive x. (In order to avoid confusion, it should be mentioned that 
owing to another way of developing the transformation formula, in the 
author’s earlier papers [4,5] the numerical order of the indices of the time 
constants was reversed.) If r2 is smaller than rl, exp(-t/r,) fades earlier 
than exp(-t/r,) with increasing time t. 

DETERMINATION OF THE MAIN TIME CONSTANT ,r, 

The larger time constant r1 can be determined by means of the 
subtangent method proposed by Schonborn [6]. Another way to do this is 
by plotting In x as a function of t for t > ttp. Then r1 can be calculated from 
the slope of the resulting straight line. This method better compensates 
errors in reading than does drawing a tangent. 

It should be borne in mind that the time constant r, is essentially 
governed by the product of the heat capacity of the reactive substance, 
including its receptacle, and the resistance R of the heat conductor which 
connects the receptacle with the casing. The species and the mass of the 
reactive substance therefore influence the value of r,. There is also another 
aspect: if the substance to be investigated has a low thermal conductivity, 
this could have an influence on r, by way of influencing the value of R. This 
influence might even change in the course of the reaction or the phase 
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transition. It should also be mentioned that r1 is a function of temperature. 
All this has to be considered in the calibration procedure, of which the 
determination of r, is an important part [7]. 

DETERMINATION OF THE SECOND TIME CONSTANT zz 

The determination of the second time constant r2 is a little more difficult 
than that of rl, and can only be done when the evaluation of r1 has been 
made. To carry it out, we must look for the point of time t, at which the 
maximum of x(t) appears, and for ttp, at which the turning point occurs. 
The value of t, is found by differentiating eqn. (4) once and setting the 
derivate to zero. To find ttp, eqn. (4) is differentiated twice. The second 
derivate is set to zero and solved for t. 

The first step yields 

t, = [r, r2/(r1 - r,)l ln(rJrJ 

and the second step 

t,, = 2[r1r2/(r1 - rJ1 ln(rM 

(5) 

(6) 

Because ttp is twice t,, it follows that 

tq) - t, = t, (7) 

This expression seems extremely trivial but it will gain in importance in 
further considerations in the more realistic case of a rectangular heat pulse 
of measurable duration. 

Using the abbreviation y = r1/r2, we can rewrite eqns. (5) and (7), 
resulting in 

(6, - G/r, = (ln YMY - 1) (8) 

First the right-hand term of eqn. (8), which is a function of the ratio y of 
r1 and r2, will be considered. In Table 1, y values ranging from 2 to ~0 are 
given together with the corresponding function values. 

The left-hand term of eqn. (8) is known from the analysis of the signal 
curve x(t). Its value corresponds to a particular value of the function 

(ln YMY - 1) ( see Table 1). To determine r2, we simply read the 
corresponding y in the same row and calculate r2 via r2 = r,/y; r1 and r2 
are both functions of temperature. 

TABLE 1 

Values of the function (ln y)/(y - 1) 

Y (In Y)/(Y - 1) Y 0 Y)/(Y - 1) 

2 0.6931 30 0.1173 
5 0.4024 cc 0.0000 

10 0.2558 
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(a) 

1 

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Time t in arbitrary units 

1.25 

cn 

0.25 

0 

(b) 

0.4 0.6 
Time t in arbitrary units 

Fig. 1. (a) Influence of y on the shape of signal curves caused by heat pulses of infinitesimal 
duration (the transferred heat being the same in each case): (1) y = 30; (2) y = 7.5; (3) 
y = 3.75. (b) Influence of y on the shape of signal curves (in comparison with Fig. la, the 
time axis is stretched). 

Figure 1 shows the influence of y = r,/r2 on the shape of signal curves 
caused by an infinitesimal heat impulse when r1 is given with 0.6 time units. 
We now have to consider the effect of a rectangular heat pulse of finite 
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length instead of infinitesimal duration. If we formalize this it reads 

Q = 41 df+Xideal 

Q = 42 Af+xrea, 
+I>>&, but +,dt=+,At 

The question is whether xrea, equals xidea, for t 2 t,. 

USE OF A HEAT FLOW OF FINITE DURATION IN THE DETERMINATION 

OF THE TIME CONSTANTS 

Deduction of a formula for the signal curve caused by an expanded heat 
impulse of rectangular shape 

A source heat flow rate which is constant within its duration can be 
generated, for example, by means of an electric heating element, possibly 
installed for calibration purposes. In order to answer the question which 
arose above, a rectangular heat impulse of duration At is chopped into short 
impulses, so that eqn. (4) is at least approximately valid for each of them. A 
special time measure is now introduced 

AZ = At/n (9) 

where z is taken from the initial of the German word for time, “Zeit”. The 
instrument’s response to the first partial pulse is analogous to eqn. (4), with 
Q being replaced by C#J* AZ where +* is the constant heat flow rate. At 
t = 0, the signal x is zero. 

The signal curve xi(t), the response to the ith partial impulse, is then 

XiCt> = 
+* A’ {e-[te(ibl)Az]lr, _ e~[r-(i-l)Az]lrz} 

Tl - 22 

where xi(t) must be 0 when t - (i - 1) AZ = 0. 
The resultant total signal curve is the superposition of the partial 

responses, i.e. 

%(t) = i %Jt) = $ ~{e-l-ii-lN~l~r, _ e~[t-(i-l)Azlh} 
(11) 

i=l 1 2 

Equation (11) is still imperfect because when x(t) is taken and inserted into 
eqn. (l), for all values oft, the incorrect result, 4 = 0, is obtained which can 
only be the case when the source heat flow 4 * has ended. This imperfection 
is due to the fact that the partial responses are not valid for a continuous 
real source heat flow, but to an artificially chopped one. We must therefore 
try to overcome this imperfection by transforming eqn. (11) into an 
integral, which means looking for the limits of X xi(t) for n to ~0. According 
to the definition 

lim ~f(a+iA_x)Ax=jbf(x)dx with b = a + n Ax 
n-13 ;=, a 
or-4 



K.-R. L~bl~ch~~her~och~~. Acta 231 (1994) 7-20 

Fig. 2. Sketch of a rectangular heat pulse. 

from eqn. (11) we have 

taking into account that 4* is constant within At = p1 AZ = z. 
To avoid writing indices with the time constants, in the following h is 

used instead of rl, and k instead of r2. Equation (12) then yields 

4 * x(l) = h _ k 

[he--(r-z)lh _ ke-(f-zfk _ (he-‘/h - ke-“k)] 
(13) 

where z runs from 0 to z,, which is the end of the source heat production, 
i.e. z E [0, z,], t 2 z. Within the range from 0 to z,, t can neither precede z 
nor run behind it. This is illustrated in Fig. 2. 

If t -C z,, then t = z; otherwise t = t. For t < z,, eqn. (13) reads 

x(z) = & [h - k - (he-z’h - kepz’“)] 

If t a z,, then z, becomes a time constant. Equation (13) now reads 

x(t) _ ,yk [he-ff-ze)h _ ke-ff_ZeYk - (he-*” - ke-r/k)] 

(14) 

(l-3 

Equations (34) and (15) can be integrated and also differentiated, either 
once or twice. Taking eqns. (14) and (15) into account, the integration of 
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eqn. (13) yields 

I 

,CC 

I 

Ze 
x(t) dt = X(z)dz+ ‘x(t)dr=$*ze=Q 

I (16) 
0 0 2,: 

In order to show that the imperfection inherent in eqn. (11) is eliminated by 
changing it into an integral (eqn. (12), from which eqns. (13), (14) and (15) 
follow), the following calculations are made. 

The derivations of eqn. (14) are 

dX/dz = & (ePZ/h _ e-Z/k) 

and 

d*X /dz* = & [(l/k)e-“‘k - (l/h)eP”h] 

and those of eqn. (15) are 

dX/dt = & [e-Cr-z,Yk _ e-Cr-z,Yh _ (e-rlk _ e-llh)] 

(17) 

(18) 

(19) 

and 

d2X Jdt2 = &{(l/h)eP(“e)l~ - (l/k)e-(r-ze)‘k - [(l/h)e-“h - (l/k)eP”k]} 

When t is within the range from 0 to z,, i.e. within the duration of the source 
heat flow of rectangular shape, where is t = z, the substitution of eqns. (14), 
(17) and (18) into eqn. (1) yields 

+=~+(h+k)d~/dz+hkd*~ldz*=~$* (21) 

When t > z,, i.e. the source heat flow has ended, then substituting eqns. 
(15), (19) and (20) in eqn. (1) results in 

4 = x + (h + k) dX/dt + hk d*X/dt* = 0 (22) 

Equations (16), (21) and (22) demonstrate that eqn. (13) is an exact 
description of the signal curve x(t) which is the answer to a constant source 
heat flow rate (“rectangular heat impulse”) of arbitrary duration z,. 

Figure 3 shows the signal curves of a short heat impulse and an 
infinitesimal heat impulse. Although the duration z, of the short impulse is 
only a fifth of the value of the time constant h = rl, the signal curve caused 
by it deviates perceptibly from that which results from an infinitesimal 
impulse. Only if the value of z, is smaller than a twenty-fifth of h do the two 
curves practically coincide, see Fig. 4. The signal curve for a constant source 
heat flow rate lasting for a prolonged period is shown in Fig. 5. 
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0.0 
0 1 2 3 4 

Time t in arbitrary units 

Fig. 3. Comparison of a signal curve caused by a short heat pulse (1) with that of pulse of 
infinitesimal duration (2). (1) z, = 0.1; (2) z, = 0. 

0.0 A 

0 1 2 3 4 
Time tin arbitrary units 

Fig. 4. Comparison of a signal curve caused by a very short heat pulse (1) with that of pulse 
of infinitesimal duration (2). 
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0 1 2 3 4 5 6 I 8 
Time f in arbitrary units 

Fig. 5. Signal curve caused by a constant source heat flow rate rectangular in shape lasting 
for a prolonged period. 

Determination of the time constants 

As in the idealised case, here too a knowledge of the point in time at 
which the maximum or the turning point of x (from eqn. (13)) occurs is 
essential in order to determine the time constants. If the value of z, is high, 
eqn. (14) shows that with increasing z, x practically reaches the values of 
+* but cannot exceed it. Although x runs for a prolonged period, 
practically parallel to the time axis, x does not run exactly parallel to it 
anywhere. Therefore the maximum can only appear at t, = z, or at t, > z,. 

The value of t, is calculated by setting dX/dt (from eqn. (19)) to zero, 
and by solving it for t. The result is 

hk ezeik _ 1 tm = /, _ k In er,lh _ 1 [ 1 (23) 

The practical implication of eqn. (23) remains to be discussed. Because eze/k _ 1 
lim In z,lh 

[ 1 h-k 

7x+= e 1 = hk Z, 

from eqn. (23), t, = z, in the case of a prolonged duration of the rectangular 
source heat flow. 

However, a very short impulse yields 

(24) 
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because 

ez& _ I h 
lim -=- 
z,+~ e dh _ 1 k 

Consideration of eqn. (23) shows that only in the case of a very short heat 
impulse is a result obtained (eqn. (24)) that is comparable with that of eqn. 
(5). Otherwise, t, corresponds to an expression which is a function of z,. 

As can be seen in Fig. 5, there are two points of inflection in the signal 
curve of a source heat flow of prolonged duration. In the following, only 
that turning point which appears after t, is of interest. This turning point is 
determined by setting d’X/dt* from eqn. (20) to zero and by solving the 
expression for t. This yields 

hk erJk _ 1 
t,, = h _ k ln~+ln- erJh _ 1 1 
Subtracting eqn. (23) from eqn. (25), we have 

hk h 
4, - t, = h _ k In i 

(25) 

(26) 

where h = z, and k = r2. 
Equation (26) is identical with eqn. (7), taking into account eqn. (5) as 

well. This is surprising in so far as the shape of the signal curve caused by a 
rectangular heat impulse is considerably different from that which would 
result from an infinitesimal impulse. In contrast to the real heat impulse, an 
impulse of infinitesimal duration cannot be realised. From this, eqn. (26) 
gains in importance as it confirms that the method for determining the ratio 
y of the two time constants, which was developed on the basis of the 
hypothetical infinitesimal impulse, applies to the real case. 

After the problem of finding the value of the ratio y = h/k = z,/zz has 
been solved, there remains the question of the determination of the main 
constant h = z1 under real conditions. Schonborn’s proposal [6] also 
indicates the solution in this case. In the ideal case, r1 is equal to the length 
A of the subtangent drawn at the signal curve x(t) at an arbitrary point far 
behind ttp. A is given by the absolute value of the ratio x(t)/(dX/dt). It can 
be calculated from eqns. (15) and (19), resulting in eqn. (27). 

1 
(27) 

If z, is very small, eqn. (27) yields A = h = T,, and if ze is large, it yields 
A-h. This demonstrates that both the methods described above and 



proposed to determine r, in the ideal case, can also be used under real 
conditions. 

Because c,, the point of time at which the maximum of x(t) appears, is 
far behind z, if z, is small (see eqn. (24)), there is no need for the source 
heat flow to be rectangular in shape. This is of some practical interest, 
especially as regards the experimental technique proposed by Hiihne [7]. 
He recommends the use of a light flash in the absence of an electric heating 
element for the generation of a heat impulse. 

CONCLUSIONS 

The intrinsic inertia of a heat flux calorimeter results in a more or less 
pronounced deviation of the recorded signal from the source of a variable 
source heat flow rate which is caused by a chemical reaction. This 
phenomenon is commonly called “smearing”. The signal curve must 
therefore be desmeared in order to obtain the original heat flow rate. 
Several desmearing methods are known. Of these, the method based on the 
idea of Calvet and Camia is preferred here because it uses a classical 
mathematical approach of great lucidity to describe the physical event 
taking place in the calorimeter. The differential equation established by 
these authors clearly describes the correlation between the signal curve and 
the original heat flow rate. The signal is understood as being proportional to 
the effluent heat flow which passes the heat conduction resistance of the 
calorimeter, and because of this, the equation of Calvet and Camia (eqn. 
(1) in this paper) is considered an appropriate tool for transfo~ing the 
signal curve into the course of the original heat flow rate. As has been 
shown, it is applicable to all kinds of heat flux calorimeters operated in the 
isoperibolic or the scanning mode. To apply this equation, the values of the 
time constants involved in the equation must be determined. This 
determination is considered to be part of the calibration procedure with the 
calorimeter. 

The determination of the time constants is carried out by analysing the 
signal curve caused by a heat impulse, Because the equation of Calvet and 
Camia is easily solved in the case of an impulse of infinitesimal duration, in 
default of a formula describing the signal due to a real heat impulse, this 
model has hitherto been used to handle the problem. However, di~culties 
arose due to the fact that the shape of the signal curve caused by a real heat 
impulse of short but perceptible duration was considerably different from 
the hypothetical one, which is considered to be the solution to the 
unrealisable infinitesimal heat impulse. In both cases the same amount of 
heat is transferred. 

To solve the problem outlined here, a formula has been deduced which 
exactly describes the signal curve caused by a source heat flow rate, 
rectangular in shape and of optional duration. 



Although the shape of the signal curve caused by a real heat impulse 
deviates considerably from the signal curve which can be calculated as the 
answer to the hypothetical impulse of infinitesimal duration, it has been 
demonstrated that the methods which were proposed to determine the two 
time constants in the case of the hypothetical impulse, can be used with only 
little modification to determine the time constants under real conditions. 

The mathematical treatment of the problem has contributed to the 
removal of the uncertainty relating to the determination of the time 
constants, which are of great importance in the application of the 
desmearing tool. Some advice has also been given regarding work in 
practice. It may be hoped that this will help to increase the reliabihty of the 
application of thermoanaIytica~ methods to kinetic research problems. 
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